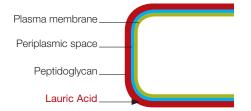
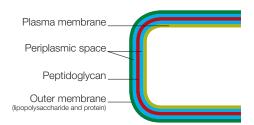


BETTER GUT HEALTH


Intestinal health, essential for good performance without resorting to massive antibiotics use, is the result of interaction between diet, intestinal mucosa integrity and the balance of intestinal microflora. A stable intestinal flora supports digestion and effective absorption of nutrients, limits intestinal diseases and promotes an effective immune state. Gram⁺ bacteria, such as streptococci, staphylococci and clostridium, cause considerable damage to animal health and significant financial losses for the farmers. *Streptococcus suis* is transmitted by direct contact or diffused by indirect contact via the droplets dissipated in the air with the respiration. Healthy pigs can carry the microorganism for several months in the tonsils and sows can act as healthy carriers. The sow transmits the antibodies to the piglets through the colostrum and, for this reason, the disease is uncommon in the nursing animals. Disease is common in the first period after weaning and often appears 2-3 weeks later and continues up to about 16 weeks of age. After the weaning almost 100% of pigs becomes bearer within three weeks.

Streptococcus infection: economic damages


■ High mortality	10-50%
■ High morbidity	5-20%
Less average daily growth	20/40 g/die
■ Feed consumption reduction	+8/15 day
Feed conversion reduced	-20/50%
■ Production loss days	+20/30%
■ Drugs cost increased	+1-5 €/pig
	+ 1-3 e/pig
Increase general costs of work/possible workers contagion	

Gram+ bacteria cell wall is (50-90%) constituted by peptidoglycans, while Gram- have an additional polysaccharidic membrane (not present in Gram+) and a thin peptidoglycan membrane.

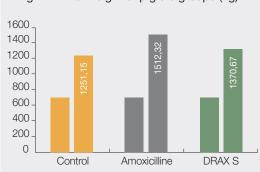
GRAM POSITIVE

GRAM NEGATIVE

Among medium chain saturated fatty acids, Lauric acid is the one having strongest antimicrobial activity against gram positive bacteria and against some viruses and fungi. Lauric acid is able to interpose with the peptidoglycan cell wall causing its own breaks: once inside the cell, Lauric acid interfere with the bacterial gene transduction and transcription processes.

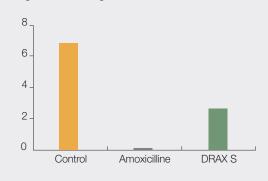
DRAX \$ 20 | 8 Trials

(Veterinary University of Milan, Zootechnical Experimental Center, CZDS, Lodi)


Fig. 1 - Piglets weight during trial

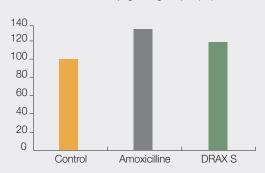
Tab. 1 - DRAX experimental design

Treatment	Prestarter (0-14 days)	Starter (15-28 days)
Control	No additives	No additives
Medicated	Amoxicilline (400 mg/kg)	Amoxicilline (400mg/kg)
Laurate	DRAX S (1kg/ton)	DRAX S (1 kg/ton)


Fig. 2 - Final weight of piglets groups (kg)

Tab. 2 - DRAX Experimental design

Treatment: 3	Piglets for replicate: 4	
Replicates: 16	Piglets for treatment: 64	
Total replicates: 48	Total Piglets: 192	
Piglets: Topics (Stambo HBI Dalland 40)	50% males, 50% females	
Weaning age: 24 d	Weaning average weight: 9 kg	


Fig. 3 - Dead Piglets

Tab. 3 - Dead animals and AB treated

	Control	Amoxi	DRAX S
Dead* (*Streptococcus)	7	0	3
Antibiotic treated			
Streptococcus (Amoxicilline)	5	0	3
Diarrhea (Baytril)	1	9	0

Economic value of piglets groups (%)

ECONOMIC CONSIDERATIONS

In the post-weaning DRAX has demon strated that it can easily decrease the dosage (and/or the time) of use of the antibiotics commonly used to prevent Streptococcosis. Compared to the control group (no antibiotic, no additives) DRAX has guaranteed an economic return of 20% more than the market value of piglets.

When utilize DRAXS

- ✓ To reduce Streptococcus infection
- √ To prevent post weaning diarrhea
- ✓ During stress or heat situation
- ✓ To improve immunity status
- ✓ After feed changement quality

DRAX S: Strengths points				
Dosage	Drax Indications	kg/ton	Timing	
Post-weaning piglets	Coli Diarrhea prevention Streptococcosis	1,0 - 1,5 kg	All the period	
12 - 20 kg	Coli Diarrhea prevention Streptococcosis	1,0 - 1,5 kg	All the period	
20 - 40 kg	Coli Diarrhea prevention Streptococcosis	0,5 - 1,0 kg	All the period	
Gestation sows/gilts Lactation sows/gilts	Streptococcosis prevention	0,5 - 1,0 kg 1,0 kg	5-10 days All the lactation period	

DRAXS

Premix for pigs

Additives per kg:

Oligo elements:

3b603 Zinc (Zinc oxide) mg 30.000.

Support:

Medium chain fatty acids (C12);

Calcium salts of medium chain fatty acids (Lauric Acid C12).

Instructions for use and doses: mix carefully to the other components of the feed, according to good processing practices, at a rate of 1 - 1.5kg / ton. of feed.

Do not exceed the limits set for trace elements with the use of other supplements.

Distributed by:

